
VoltaFeet: The Future of Sterile Foot Care

Ashton Naumann, Logan Groneck, Matt Heiken In collaboration with Dr. Moran, Dr. Setton, and Dr. Ruppert-Stroescu

Presentation Overview

- Commercial Need
- 2 The VoltaFeet Solution
- 3 V&V Testing Results
- 4 Future Directions

A Need for Sterilization

Why it is important to maintain a sterile skin surface.

Odor, Infection, Injury

Let's examine the foot...

Foot Odor (Bromodosis)

Affects 16% of people (NFHA, 2012)

 Caused by microbes breaking down sweat and skin debris

Odor, Infection, Injury

Let's examine the foot...

Foot Odor (Bromodosis)

Affects 16% of people (NFHA, 2012)

 Caused by microbes breaking down sweat and skin debris

Athletes Foot

20% report Athlete's foot, 11% report toenail fungus (NFHA, 2012)

Painful, unsightly fungal infection

Odor, Infection, Injury

Let's examine the foot...

Foot Odor (Bromodosis)

Affects 16% of people (NFHA, 2012)

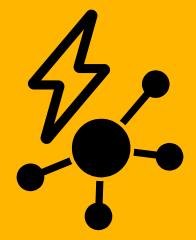
 Caused by microbes breaking down sweat and skin debris

Athletes Foot

20% report Athlete's foot, 11% report toenail fungus (NFHA, 2012)

Painful, unsightly fungal infection

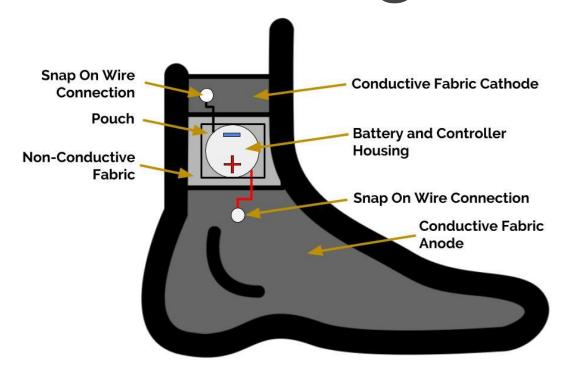
Chronic Diabetic Foot Ulcers


Affects 6.3% of people Globally, 13% in North America (Zhang et al. 2017)

Poor healing response, risk of infection/amputation

Commercial Needs

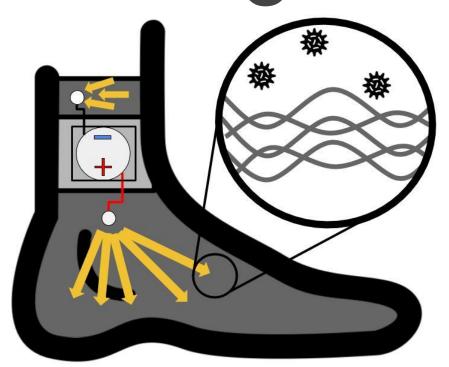
Foot Odor + Athlete's Foot + Diabetic Socks

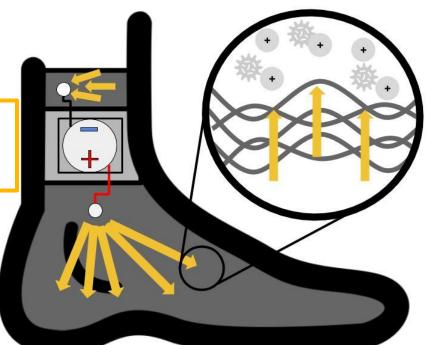

A convenient, reliable, long lasting treatment that eliminates microbial activity on the surface of the foot.

The VoltaFeet Solution

How we use electrochemical delivery of silver ions for antimicrobial foot protection.







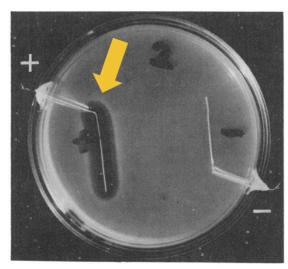
Electrode/Electrolyte
Interface

VoltaFeet Prototype

Verification Criteria

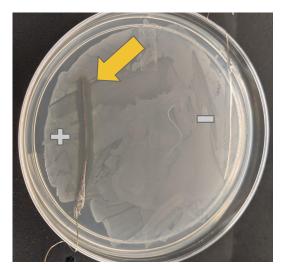
Design Specification	Conclusion
99.9% Antimicrobial Efficacy	All zones of inhibition with E. coli resulted in negative stick and streak tests
Broad Range Efficacy against gram (+/-) bacteria and fungi	Our results on gram negative E. coli will likely translate to other microbes such as gram positive staph aureus and fungi based on Spadaro et. al and other literature
Sizing Options	Using silver coated knitted nylon provides a flexible, stretchable material that can accomodate a few foot sizes with one sock
Works with 99.9% efficacy on Skin Surface	It is reasonable to believe our results in agar media can translate to skin surfaces after adjusting to impedance changes
Cost Effective (\$10-\$30)	The final cost for the prototype without labor or accounting for bulk material discounts is \$11.38
User Safety (safety risks are at most low-moderate by Design Safe standards)	Satisfactory design safe analysis and functional currents (5-150 µA) far below the threshold of feeling for DC current (~5 mA). Silver is a hypoallergenic metal with little to no risk of immune response.

• 1	Comfort	Fell 1.39 points behind the average score for the normal sock. This is well out of the 0.5 range that was desired
	Appearance	Fell 0.08 points behind the average score for the normal sock, within acceptable range
	Quality	Scored 0.54 points higher on average than the normal sock
	Weight (< 180 g)	Complete prototype with battery and housing collectively weighed 45 grams
	Silver Ion Skin Penetration (≧ .1 mm)	Although we were not able to conduct skin studies due to regulations, we were able to achieve depth penetrations in agar against gravity of at least 5.5 mm
	Longevity (> 1 month functional use)	Device remains functional for at least one month of use. Battery life is estimated to last > 1 month based on manufacturer data. Silver release maintained at higher than required current density (1.2 µA/cm²) for 14 days of continuous use
	Simple Operation (< 10 s)	Circuit activation via battery insertion and snap connection required fewer than 10 seconds on average in ergonomics testing (~8.3 seconds)



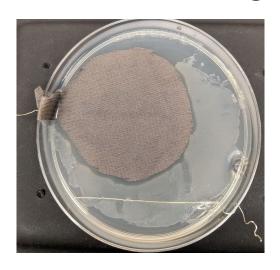
V&V Testing Results

Does VoltaFeet satisfy the design specifications and user needs?

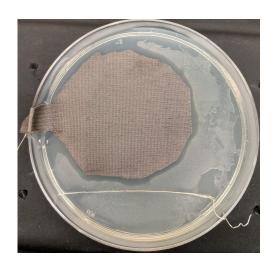

Applied Current Boosts Silver's Antimicrobial Nature at Anode

Left: 0.4 μA, Silver electrodes, S. aureus (Spadaro et. al).

4 mm clear inhibition zone.



Right: 4.9 μA, Silver electrodes, E. coli.

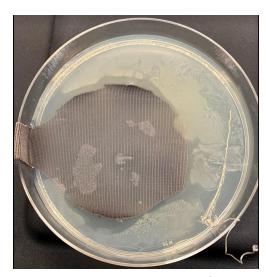

2 mm clear inhibition zone.

Our Silver Fabric is Passively Antimicrobial Beyond its Surface

Left: 0.0 μA (Control), E. coli, Electrode depth 2.0 mm

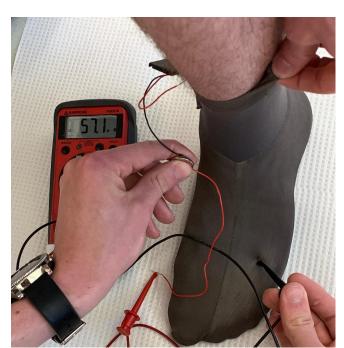
Right: 57.6 μ A, 0.76 μ A/cm² E. coli, Electrode depth 2.0 mm.

Notice increase in lateral inhibition on the surface. 0.5 mm average radial increase


Active Deposition Provides Benefits Above and Beyond Diffusion

Left: 0.0 μA (Control), E. coli, Electrode depth 5.5 mm

No surface inhibition.



Right: 57.6 μ A, 0.76 μ A/cm², E. coli, Electrode depth 5.5 mm

Marked clearing.

VoltaFeet Effectively Conducts Thru User Despite Skin Impedance

VoltaFeet is a Valid Foot Sterility Intervention

A convenient¹, reliable², long lasting³ treatment that eliminates microbial activity⁴ on the surface of the foot.

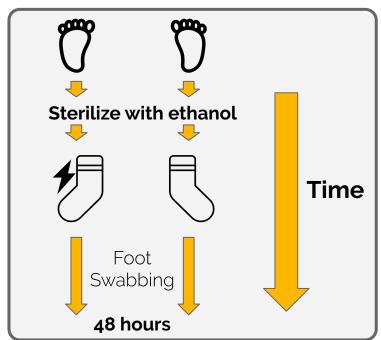
- 1: User Satisfaction Survey + Ashton's Testimonial
- 2: Elastic material ensures quality conducting thru user and further improves with sweat
- 3: Limited by removable battery at 38 days continuous use, not silver content of fabric
- 4: Bacterial culture studies supported antimicrobial activity at anode

Future Directions

How will we proceed with future V&V testing and protect our IP?

Future Testing

In-Vivo Efficacy


Bilateral control experiment

- Ensure in-vivo efficacy
- Current density optimization

Longevity

Stress testing

- Washing/Drying cycles
- Amount of available silver

Future Testing

In-Vivo Efficacy

Bilateral control experiment

- Ensure in-vivo efficacy
- Current optimization

Longevity

Stress testing

- Washing/Drying cycles
- Amount of available silver

How does washing the prototype multiple times affect its performance?

How do normal user conditions impact **battery life**?

How does the prototype react to **prolonged** stress?

Thank you!

Questions?

References (1/3)

- "ACTICOAT: A Unique Nanocrystalline Silver Delivery System for Burns and Wounds" EPlasty. http://www.eplasty.com/images/PDF/Acticoat.pdf
- Fish, Raymond M., and Leslie A. Geddes. "Conduction of Electrical Current to and Through the Human Body: A Review." U.S. National Library of Medicine: National Institutes of Health, EPlasty, 12 Oct. 2009, www.ncbi.nlm.nih.gov/pmc/articles/PMC2763825/.
- Gault, W.R., Gatens, P.F. "Use of low intensity direct current in management of ischemic leg ulcers." Phys Ther 1976; 56: 3, 265-269.
- "Global Market Study on Diabetic Socks: Polyester Anticipated to Be the Second Largest Material Type Segment in Terms of Value During 2017 2025." Pyrite Market: Global Industry Analysis and Forecast to 2015 to 2021, Persistence Market Research, Oct. 2017, www.persistencemarketresearch.com/market-research/diabetic-socks-market.asp
- Hobman, John L, and Lisa C Crossman. "Bacterial Antimicrobial Metal Ion Resistance." *Microbiology Society Journals*, Journal of Medical Microbiology, 1 May 2015, www.microbiologyresearch.org/docserver/fulltext/jmm/64/5/471_jmm023036.pdf?expires=1543455902&id=id&accn ame=guest&checksum=90F1277DCC4FF0F7C0D988737EE6FFD8.
- Karba, R., Semrov, D., Vodovnik, L. et al. "DC electrical stimulation for chronic wound healing enhancement. Part 1. Clinical study and determination of electrical field distribution in the numerical wound model." Bioelectrochemistry and Bioenergetics 1997; 43: 265-270
- Mijnendonckx, K., et al. "Antimicrobial Silver: Uses, Toxicity and Potential for Resistance." Biometals, Aug. 2013, www.ncbi.nlm.nih.gov/pubmed/23771576.

References (2/3)

- Morrill, K., et al. "Spectrum of Antimicrobial Activity Associated with Ionic Colloidal Silver." Journal of Alternative and Complementary Medicine, Mar. 2013, www.ncbi.nlm.nih.gov/pubmed/23017226.
- "National Foot Health Assessment 2012." Foot Odor | Institute for Preventive Foothealth (IPFH), Institute for Preventive Foot Health, June 2012, www.ipfh.org/resources/surveys/national-foot-health-assessment-2012.
- Nies, D. H. "Microbial Heavy-Metal Resistance." *SpringerLink*, Applied Microbiology and Biotechnology, June 1999, link.springer.com/article/10.1007/s002530051457.
- Politano, Amani, et al. "Use of Silver in the Prevention and Treatment of Infections: Silver Review." Surgical Infections, Feb. 2013, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4955599/
- Ramadan, A., et al. "Effect of low-intensity direct current on the healing of chronic wounds: a literature review." Journal of Wound Care vol. 17, No. 7, July 2008, https://pdfs.semanticscholar.org/9713/c4d16ebdf70b051114dc27d455e8fa641c09.pdf
- Singh, N., et al. "Preventing Foot Ulcers in Patients with Diabetes." The Journal of the American Medical Association, Jan. 2005, https://www.ncbi.nlm.nih.gov/pubmed/15644549.
- Sotiriou, G A, and S E Pratsinis. "Antibacterial Activity of Nanosilver Ions and Particles." U.S. National Library of Medicine, 15 July 2010, www.ncbi.nlm.nih.gov/pubmed/20583805.

References (3/3)

- Spadaro, J A et al. "Antibacterial effects of silver electrodes with weak direct current" Antimicrobial Agents and Chemotherapy vol. 6,5 (1974): 637-42.
- Wang, M., and C. Xu. "Inorganic Nanoparticles for Transdermal Drug Delivery and Topical Application." *Science Direct*, Academic Press, 19 Aug. 2016, www.sciencedirect.com/science/article/pii/B9780128029268000057.
- Young, Por Chye, et al. "Antibacterial Effects of a Silver Electrode Carrying Microamperage Direct Current in vitro." e-Publications@Marquette: Physical Therapy Faculty Research and Publications, Marquette University, 1 June 1994, epublications.marquette.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1110&context=phys_therapy_fac.
- Zhang, P., et al. "Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis." *Annals of Medicine*, Nanjing University Medical School, March 2017, https://www.ncbi.nlm.nih.gov/pubmed/27585063
- Zyga, Lisa. "Elastic Circuit Connectors Designed for Rubber-Band-like Circuits." *Phys.org News and Articles on Science and Technology*, Phys.org, 10 July 2007, phys.org/news/2007-07-elastic-circuit-connectors-rubber-band-like-circuits.html.

Icons from the Noun Project.